KIPS Trans. Comp. and Comm. Sys.
Vol.8, No.4 pp.79~86 pISSN: 2287-5891

HM 22 MY 2t0IEEElE 0188 AAIE HIoIH o= 79
https://doi.org/10.3745/KTCCS.2019.8.4.79

A Time-Series Data Prediction Using TensorFlow
Neural Network Libraries

Kumbayoni Lalu Muh' - Sung-Bong Jang™

ABSTRACT

This paper describes a time-series data prediction based on artificial neural networks (ANN). In this study, a batch based ANN model
and a stochastic ANN model have been implemented using TensorFlow libraries. Each model are evaluated by comparing training and
testing errors that are measured through experiment. To train and test each model, tax dataset was used that are collected from the
government website of indiana state budget agency in USA from 2001 to 2018. The dataset includes tax incomes of individual, product
sales, company, and total tax incomes. The experimental results show that batch model reveals better performance than stochastic model.
Using the batch scheme, we have conducted a prediction experiment. In the experiment, total taxes are predicted during next seven
months, and compared with actual collected total taxes. The results shows that predicted data are almost same with the actual data.

Keywords : Artificial Neural Networks,Time-Series Data, Data Prediction, TensorFlow

94 229 A

2
& EEolA] Q1T A EE o83 A Holy o=
AT AFRH SEILE Tne] JITAR TS TR S
TR AGE el mse) lrjohtse] T4 PAolERRE 874Uzt 4
of 2EMAIAY VBT F2 e AT B, FE& AeE 1 BHA] 71dke] AL o] 4-3kof
S dateh A delHE Fyste] vl 43S Y sigich A9 4

MZE, AlAIE GOlE, HOE O, HMEZ?

1. Introduction

Machine learning through artificial neural networks
(ANN) are attracting much attention to the researchers
because it is the core technology for fourth industrial
revolution. The edge computing will dramatically improve
data processing time at users computing devices. This
environment is opening up a new opportunity that an ANN
can be more efficiently used for a time-series data
prediction. One of problems in machine learning is that it
takes too long time to train and predicts a future. If edge
computing is applied to ANN training and prediction,
performance will become enhanced when compared to
traditional approach. In the future, ANN will be applied more

¥ o] A Fo Ty st nE Y H-S(2016-104-096).
Ful 9 2o Bshoh T A3
g 8 9 gegtdsa Astadd s
Manuscript Received : January 23, 2019
Accepted : February 19, 2019
Corresponding Author : Sung-Bong Jang(sungbong.jang@kumoh.ac.kr)

ol r}l
e

A

B eholBny e &

Kumbayoni Lalu Muh" -

o] &3 AAD dlolEl o=

ok
ot

Aol sl AR B AT A B delnelels Agatel WA 7)ol
gal, TRE 2 AFgl ojs) £ olelsh AQeld S SAssth 7Y
)l

FHE A dolHE ARSI A3 A, WA 7Ieke] AR 71

AR 3 FF A A5E FYsha o

i

2

and more to the wider area of industries. ANN is one of
algorithms, which operates by mimicing the mechanism of
the human brains. The neural network itself is only a
framework for data analysis based on machine learning
algorithm [2]. Especially, data prediction is one of areas
where ANN can be applied usefully. Furthermore, tax
prediction is a important area of data predictions. Most of the
countries have their own taxation system to collect taxes
efficiently. At the end of the year, government departments
formulate the annual tax income and forecast the total tax
that will be collected. Taxes are very important incomes
because government should pay salary to the people who
work for the public services such as education, health care
and infrastructure maintenance. Appropriate prediction of the
total tax is able to help government to make an efficient
budget plan. In some countries, this job has been done
manually by a people who is responsible for that. This lead
to large errors for prediction. The reduction of mistakes and
errors in tax forcasting becomes really important to make

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ licenses/by-nc/3.0/)
which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

80 JEMEISDl=2A/EFEH H S48 AIAH HMeH M4=(2019. 4)

correct deision for future budget plan. There are many types
of taxes, which include company taxes, individual income
taxes, product market taxes, personal properties taxes, real
estate. Nowadays, to predict the tax, most researchers utilize
statistical schemes by using taxation history in th past. The
existing schemes like this are not efficient.

To improve the efficiencies, a batch based ANN model
and a stochastic ANN model are implemented using
TensorFlow libraries, and each model are evaluated by
comparing training and testing errors. To train and test each
model, tax dataset was used that are collected from the
government website of indiana state budget agency in USA,
which includes tax incomes of individual, product sales,
company, and total tax incomes. Also, using the better
model, a data prediction experiment is conducted. In the
experiment, total taxes are predicted during next seven
months, and compared with actual collected total taxes.

The contribution of this research are as follows. First, it
is shown that batch learning shows better performance than
a stochastic model for a time-series data prediction using a
neural networks. Furthermore, we see that the losses are
different according to the batch size in a batch-based
learning. Second, we can attain high accuracies when we
predict a time-series data using a neural networks. For this,
each model was implemented using a Tensorflow libraries to
conduct an experiment.

This paper is organized as follows. The existing works
related to ANN and data prediction are discussed in Section
2. Section 3 presents a implementation and dataset about a
ANN model for experiment. In section 4, the experimental
results are presented. Finally, the section 5 concludes the paper.

2. Related Works

L. Sheng [1] uses genetic algorithm combined with
support vector machine (SVM) to predict the data. In this
scheme, they points out that SVM are not enough to achieve
acceptable prediction accuracies. To overcome the limitation,
they used a genetic scheme for the prediction. Y. Zhang [2]
presents a method that is based on a gray correlation scheme
to forecast the tax data of the Jilin province in China. In the
scheme, they made a data prediction model by analyzing the
correlation among previous collected data and conducted an
experiment using the defined model to evaluate their scheme.
Experimental results show that the proposed scheme achieve
better performance when compared with the existing solutions.
In the results, averaged prediction error and cross-validation
error were respectively 05766 and 0.0123. D. Liu [3] proposed
a enhanced prediction scheme in which a tendency of the

data is considered when they conduct an prediction. The
difference between existing solutions and their work is to
use separate coefficients to utilize the prediction size. To
evaluate their approach, they have conducted an experiment
using the dataset of Hebei province in China. D. Sena [4]
describes a prediction that is based on autoregressive
integrated moving average (ARIMA) to predict per capita
disposable income PCDI. The PCDI income represents an
individual available money after all personal taxes are paid.
The prediction results can be used to build up future policies
and plans for their province government. T. W. Ayele [5]
discuss about a temperature prediction that is based on a
machine learning. In their work, they collected temperature
dataset in real time using internet of things (IoT) sensors.
The dataset are used to train and test a defined neural
network model. Using a trained model, they predict the
temperature. Also, same authors [6] presents an air pollution
prediction that is based on long short-term memory (LSTM)
algorithm. The LSTM has been developed in 1995. In the
experiment, they attached the air sensors to the human body,
and collected the pollution dataset through wireless networks.
Using the dataset, they trained a LSTM model, and predicted
the air quality using the model.

Y. Wang [7] presents a method that is based on a LSTM
to forecast water quality on Taihu lake. In the work, they
collected water quality dataset monthly from 2000 to 2006
years using mechanical indicators. Using the dataset, they
trained a LSTM neural network and conducted an experiment
to predict the quality. To evaluate the method, they compared
the results with back propagation neural network (BPNN)
scheme. The results show that their approach are not bad
compare with the BPNN. A. M. Ertugrul [8] presents a
composite LSTM model conjunct with dropout to classify
movies genres. In the scheme, parts of nodes are dropped
from neural network model. Using the method, they can
reduce the time taken to train a defined neural network model.
The experiment results show that the invented scheme
achieve a little better performance compared to the traditional
prediction schemes such as logistic regression or averaged
summation. K. Greff [9] discusses about analysis results of
the recent LSTM variants using three representative applied
applications. Since LSTM has been invented, many variants
of the LSTM have been proposed by many researchers. In
their experiment for analysis, they set the parameters of the
target variants to be ones separately for each application.
Also, they have measured their criticalities using ANOVA
statistical scheme. The experimental results reveals that all
variants does not outperform the original LSTM scheme
significantly. Based on this results, they described advantages

and disadvantages of each variant in the hope that those are
used as some guidelines to users and developers.

3. Implementation of Neural Network Model for
Prediction

3.1 Dataset and Topology for Artificial Neural Network
For the experiment, the tax dataset is collected from the
government website of indiana state budget agency in USA
from 2001 to 2018. The dataset includes tax incomes of each
individual, product sales, company, and total tax incomes.
The unit of data is millions of dollars. We downloaded the
data file manually from the site and saved it as excel data
format. Table 1 shows structure and sample of the dataset.

Table 1. Original Dataset Sample

date Sales, tax Individual Corporate Total Tax
Tax Tax

200110 316.3 255.6 53.4 670.2

200111 3194 229 6.3 597.6

200112 306.6 286.2 104.8 744.4

200201 359.7 443 337 960.5

When we look into the data, we have found that the
original dataset cannot be used as it is. There are two
problems. The first problem is that the amount of data is too
small. The collected data contains only 203 number of
records. This amount of data are not enough to train artificial
neural networks for machine learning. However, since there
is no other data available, we extended the original data into
the data with much more number of data using shifted
arrangement. In the extension, six more columns are added
to the original dataset. Then, sales tax, individual tax and
corporate tax data are copied and pushed forward. Table 2
shows the result of re-framing the dataset.

The next problem is that some data are missing values for
some period. For example, there are no riverboat wagering,
racing wagering data values during 2001 until 2009. These
data is available after 2010. Hence, we determined that
experiment dataset includes only date, sales tax, individual
tax, corporate tax and total tax, and the other features are

il

[

N S22 HUB8Y 2H0IEXEIE 0188 AIAIE HIOIH o= 81

UK

excluded. In our study, the previous three month of data are
used as input, and total tax is used as output in a defined
ANN.

The final dataset has nine features that includes Sales
Tax3, Individual Tax3, Corporate Tax3, Sales Tax2, Individual
Tax2, Corporate Tax?2, Sales Taxl, Individual Taxl, and
Corporate Tax1l. As the name implies, sales taxl, sales tax2,
and sales tax3 are made from three of sales taxes. In the same
way, individual tax1, individual tax2, individual tax3 are made
from an individual tax. Finally, corporate tax from 1 to 3 are
made from three corporate taxes. The whole number of input
rows is about 513 records. As usual, several models are
established and tested to find the model that shows best
performance. It takes much time and effort to finish it because
it must be done by manually. In this study, we have found
a final model after many trials, as illustrated in Fig. 1. The
model consists of four layers: one input layer, two hidden
layers, and one output layer. The input layer included 9 nodes,
the hidden layers included 50 and 25 nodes, and the output
layer had 1 neuron. The topology is the 9- 50-25-1 topology.

% [=
O~

Sales tax-1

N 2//]
D 7
W, r,//
XXX

A

0,

7

Individual tax -1

;J,
O

PP
113
R
‘o'o’o

%

Corporate tax -1 .
Vi ss
1,97

Sales tax-2

Individual tax-2
1 Node

!

Total Tax
\"

Corporate tax-2

TR KA RIT
RN
'//t{\! ORI
PR

\
@,
4

/ SN
Sales tax-3 | %’,’,\\\‘
[\
£/
,,,/a\§§\

: W
N

Individual tax -3

Corporate tax-3

50 Nodes

Fig. 1. Topology of Artificial Neural Network Model
in the Experiment

Table 2. A Sample of Extended Dataset

Tod | Twd | twa | Seles w2 | MO | SN | saes Tt | PR | TR | Total Tax
3214 2715 18 3119 216.5 -3.6 319.8 372.2 1754 670.2
311.9 2165 -36 319.8 372.2 1754 316.3 255.6 53.4 597.6
319.8 372.2 1754 316.3 255.6 534 3194 229 6.3 7444
316.3 255.6 534 3194 229 6.3 306.6 286.2 104.8 960.5
3194 229 6.3 306.6 286.2 104.8 359.7 443 33.7 462.9

82 JEMEISDl=2Al/EFEH H S48 AIAH HMeH M4=(2019. 4)

3.2 Implementation

The implementation environment are as follows. The
experiment system has the dual-core central processing unit
(CPU) of Intel i7-3770K with 3.50 GHz and 3.90 GHz, and
the memory size is 16GB. It operates over 64-bit Windows
10 operating system. The basic implementation language for
implementation is Python, which has been developed by open
source project. Together with this language, we have used
tensor flow ANN libraries. In reality, it takes very long time
to implement ANN functions when we use high-level
language such as C++ or Java. Furthermore, parallel
execution cannot be supported in the application. Tensorflow
libraries provide all these requirements. The structure of the
implementation based on Tensorflow is illustrated in Fig. 2.
To convert the original dataset into a target dataset and fit
to the defined neural network model, normalize_cols
function is implemented. The function split the data into
train and test data by using normalization formula that use
maximum and minimum value of each column. The
init_weight and init_bias, are used to initialize the weight
values and bias in a defined nueral network models. x_data
are an array that contains input data for training. The
original dataset are saved as the format of excel. These data
is saved into memory, and saved in the variable. y_target
contains the target data for training. Here, total tax data
saved in this variable.

Imitialize matplothb hbrary
mitializ = loss Tunction

Define g rate and
optimization

Initialize the variables for saving
the errors

1 and
Initialize the seed vi or random Define the iteration number for
generati tramung

e the training by using

1as. plac .
fmultiplication
» errors (los
It into a los

Visualize the errors using tools

Fig. 2. A Flow of the Whole Implementation

The data type of both variable is two dimensional array.
The first dimension keeps the batch size, and the other
contains the input and target data.

Next, fully_connected function is implemented to support
fully-connected neural networks [10]. The values of each
next node will be calculated by using the equation of

(weight*input_layer)+bias. The activation function used is
ReLu [11]. To connect input layer with first hidden layer,
weight_1 variable is defined to call init_weight function for
each input node. The total number of input node is nine. The
standard deviation of each input data values is 10.0. The first
hidden layer includes 50 number of nodes. Here, 10.0 value
of standard deviation means normal distribution with sigma
standard deviation. The bias_I variable is defined to contain
the bias value of each node in hidden layers. This variable
is used in the function of init_bias.

Another variable that was defined is layer_1, which is
used by fully_connected function together with x_data,
weight_1 variable, and bias_1 variable. By doing this, nine
features is fully connected with each neuron in first hidden
layer, and the results of multiplication, addition and
activation function are saved in layer_1 variable.

To connect the first hidden layer with second hidden
layer, along the lines of connecting input layer and first
hidden layer, same kind of algorithms was implemented.
First, weight_2, bias_2 and layer_2 variable was defined and
used by same functions as before. The difference is that
instead of declaring input_layer in fully_connected function,
layer_1 is declared, and to connect 50 hidden nodes to
previous layer , the values of weight and bias inside
weight_2 and bias_2 variable is set to be 50 and 10
Jrespectively. In next hidden layer, 25 number of nodes are
added. and multiplication with weight, addition with bias
value. The results are saved in layer_2 variable.

To connect the last hidden layer to output layer, weight_3,
bias_3 and final_output variable is defined. In the same way,
init_weight function is called and the settings of weight
inside of weight_3 is three and one. The init_bias function
is also called and value of bias is 1. The reason that one
more node are added is because it represent “total tax'm
which will be saved in the y_target variable that only has
1 column.

Next important thing is to define a loss function[12]. The
loss function is used to calculate the error in the experiment.
The result of loss function calling is saved in a separate loss
variable. The loss values can be obtained by reducing the
y_target by final output and squaring the result. In our
study, since we are doing batch update, all the losses of each
data point in the batch need to be averaged by wrapping our
normal loss function. The function is a reduce_mean()
function on TensorFlow.

Next, the loss needs to be optimized. To do this, adam
optimizer is used in this study. The step values for each
iteration can be obtained by the optimization algorithm. The
distance between iteration is controlled by learning rate. The
value of the distance is 0.005. To visualize the evaluation

results, the values of training loss are saved in loss_vec
array variable. In the same way, the values of testing losses
test_loss variable. To optimize the algorithm, we changed
the number of training and testing. For each iteration, the
resulting losses are stored for every 25 intervals in a list to
visualize the data and compare the results. The training and
testing start by assigning to random value to x in a x_data
class, and by assigning random value to y in a y_vals. The
errors are stored in loss_vec array variable that has been
defined earlier. The 20% of the data stored in x_data and
y_target are given to the input data for testing in a defined
neural network model. The losses after testing are stored in
test_loss variable. To evaluate the testing results from the
experiment, Matplotlib library is used for visualization [13].
The sample code of implementation is illustrated in Fig. 3.

n [1]: import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
from tensorflow.python.framework import ops

1 /Users/123/videos/project/indiana_tax.csv', delimiter=",")
] for x in data])
12] for x in data])

n [2]: data = np.genfromtxt
y_vals = np.array
x_vals = np.array([x[1:

n [2]: ops.reset_default_graph()

sess = tf.session()

batch_size = 20
seed = 3

np.random. seed(seed)
tf.set_random_seed(seed)

vals), round(len(x_vals)*e.8), replace=False)
n(x_vals))) - set(train_indices)))

Fig. 3. Sample Code of the Implementation

4. Results

In this section, we describes a evaluation of the
implementation and experiment results from the point of
training loss and testing loss. The losses are represented
for each iteration in a training and testing for batch and
stochastic learning using a defined neural network model.

4.1 Batch Learning

The results in a batch is illustrated on Fig. 4 and 5. Fig.
4 shows the results when batch size is set to be 10. As we
can see, the loss decreases exponentially at the beginning of
the iteration, and becomes stable between iteration 300 and
400. From this results, we see that only 300 iteration needs
to be done until it becomes converged.

Next, we conducted an experiment with setting the batch
size as 20. The results are shown in Fig. 5. As you can see
from the figure, the losses start to converge between

HAM 222 HEY el0IE2E|E 0I88 AMAIZ HIOIH o= 83

1e9 Loss (MSE) per Generation
= Train Loss
6 === Test Loss
5
4
33
2
1
0 Bhsiadadd gt A
0 100 200 300 400 500
Iteration

Fig. 4. Experimental Results in a Batch with the Size of 10

1e9 Loss (MSE) per Generation
v = Train Loss
6 i === Test Loss
5
4
a
93
2
1
0
0 100 200 300 400 500
lteration
Fig. 5. Experimental Results in a Batch with the Size of 20

iteration 300 and 400 too. But, the fluctuation on the training
are very high when iterations are not enough. This means
that a model with size of 20 is not so good when compared
with the size is 10. In other words, although the errors start
to decreases in same points, the result with a size of 10 is
slightly better than those in twenty size of batch.

The originalities of our implementation for a batch scheme
is as follows. In our scheme, we have used extended dataset
that has seven features. The original dataset has three
features. To enhance a performance, the dataset has been
extended from original dataset. Second, we have used a
TensorFlow libraries that contain efficient neural network
algorithms such as parallel processing. These two schemes
are different from the existing solutions.

4.2 Stochastic Learning

In this section, the experimental results are described
when stochastic learning are applied. To implement the
stochastic learning, the same codes with batch were used.

The different points from batch scheme are as follows.
The first is that batch size has been changed, and gradient

84 JEMEISD=2A/EFEH H S48 AIAH HMeH M4=(2019. 4)

descent scheme is used. Therefore, the input data are given
to the graph node by picking value from the input and target
at random. The second is that the losses are computed, and
the weights are updated by checking this loss results for
every training. In a batch training, the weights are not
updated according to the losses on every training. When
batch is set to be 10, the weights are updated after 10 record
are trained according to the resulting losses. In a stochastic,
loss function has been changed into “normalization function”
instead of “subtraction and mean“ function. The reason is
that we don’t need to wrap the average of the losses. Also,
batch size variable has been deleted. In a experiment for a
stochastic, the iteration number was set to be the same with
batch. The experimental results are represented in Fig. 6.

lelD Loss (MSE) per Generation
2.5 — Train Loss
=== TestLoss
2.0
v
81.5
-
1.0+
0.5+
0.0
0 100 200 300 400 500
Iteration

Fig. 6. Experimental Results in a Stochastic Model

As you can see from this figure, the performance are
better than batch because the losses in the beginning of
iterations are less than those in batch. The loss of the
beginning in a batch was about 4.7, but, the value in a
stochastic is below 1.0. This is definitely advantage. However,
the fluctuation is too high from the beginning of the iteration.
This trend continues until the iteration increases, and the
result does not converge stably. This is a disadvantage. A
comparison between batch scheme and stochastic scheme is
described in more details. From the results, we see that a
batch scheme shows better performance than a stochastic
model. The reason is as follows. First, starting losses at low
iterations in a batch is smaller than or equal to those of a
stochastic. We see that from Fig. 5, the starting loss value
for training is around 2.9%10° in a batch, and from Fig. 6, it
is around 4+10°(it is 0.4%10" in a graph). For a staring loss
for testing, both schemes have a value of 0.6 * 10°. Second,
fluctuations of losses in a batch are much lower than those
in a stochastic for training and testing. This indicates that
if enough training are done in a batch, the ANN can be

Loss (MSE) per Generation

= Train Loss
=== Test Loss

1600000

1400000

Loss

1200000

1000000+

300000

600000+

0 100 200 300 400 500
Iteration

Fig. 7. Experimental Results with Gradient Descent Optimizer

reliably used to predict data because it is stable. On the other
hand, for a stochastic, the trained ANN cannot be used
reliably although enough training has been done because
there is some point where loss increases greatly.

To compare the effects for an optimizer, we have
conducted an experiment by changing an original optimizer
into another. In the previous experiment, we used adam
optimizer. In this experiment, we used gradient descent
optimizer. The code implementation to do this is very simple.
The thing to do is to simply change tf.train. AdamOptimizer
to tf.train.GradientDescentOptimizer. The others were
same, same code, iteration and learning rate were used. Fig.
8 represents the result for an gradient descent optimizer. As
you can see from the figure, it does not converge and does
not become stable. This can be used for the training. We need
to analyze the causes of this results.

Next, we have conducted an experiment of learning rate
changes in a stochastic with adam optimizer to improve the
performance. In the previous experiment, learning rate

19 Loss (MSE) per Generation

Loss (MSE) per Generation

o) w0 w0
Iteration
(b) Experimental results with

If‘: X0 . 0o n.\: o0
Iteration
(a) Experimental restuls learing rate=0.025

1ol Lo IMSE) por Ganaration leraning rate=0.0025

— T Lo

[TT - Test lown

Itél;a.lion ’“ “ ”
(e} Experimental results with learning rate=0.001

Fig. 8. Experimental Results According to the Learning
Rate Changes

distance was set to be 0.005. This value must be set in
advance in optimization algorithms before each iteration. The
processing time and loss minimum values are dependent on
the learning rate. If the learning rate is too big, the loss
might overshoot the minimum. If the learning rate is too
small, it takes too much time to converge. There is no other
way to find the best learning rate. We have to try to find
it manually for every learning rate. In this experiment, we
conducted an experiment with the rates of 0.025, 0,0025,
0.001. The experimental results are shown in Fig. 8.

As we can see from this Fig. 8-(a), if 0.025 learning rate
is set be 0.025, the loss overshoot the minimum. With 0.0025
learning rate, it start to converge between 400 and 500
iteration as shown in Fig. 8-(b). With 0.001, it dose not
converge until 500 iterations as shown in Fig. 8(c). In this
case, it need more iteration to converge.

4.3 Prediction Results

In this section, prediction results of taxes are described.
We collected real data about taxes from official website in
Indiana State in USA, and predicted the taxes using trained
neural networks. Then, we compared each data. In this
experiment, we have used a neural network model with a
9-50-25-1 topology to predict the total taxes. Also, a
stochastic model [14] was used to train the model. It takes
from twenty to thirty minutes to train the model to achieve
the convergence. Table 3 shows the results of the
measurement and prediction.

Table 3. A Comparison of Predicted and Actual Taxes

Date Actual Total Tax Predicted Total Tax

February 2018 965.3 965.4917
March 2018 1907 1907.5023

April 2018 1405.8586 1406.1

May 2018 1,136.7 1094.3425

June 2018 1123.8 1046.3466

July 2018 1116.1 11855496
August 2018 1000.9 1070.29406

September Not published yet 1537.664

After september, the available data was not released.
From the collected data, we take the total tax on the last
field in the dataset. From this result, we see that the
predicted results are almost same with the real data. The
accuracy result is really good. A model of a neural networks
is defined as the number of layers and the number of
neurons for each layer. As usual, one more models are
defined, trained, and tested by developers using input
dataset. Then, the best model is chosen after evaluating each

il

[

M 22 HEY el0IE2E|E 0188 AMAIZ HIOIH o= 85

UK

model. In our experiment, it is determined that a 9-50-25-1
topology is the best model. The experiment results reveals
that the trend of predicted taxes is almost similar to that of
actual taxes. Fig. 9 shows a comparison of actual and
predicted total taxes.

Tax Prediction

—— Actual Data

2000 1 -== Predicted Data

1800 1

1600 -

1400 1

Total Tax

1200 -

1000

month

Fig. 9. A Comparison of Actual Tax and Predicted Taxes

5. Conclusion

In this study, a batch based ANN model and stochastic
ANN model have been implemented using TensorFlow
libraries. Each model are evaluated by comparing training and
testing errors that are measured through experiment. To train
and test each model, tax dataset was used that are collected
from the government website of indiana state budget agency
in USA from 2001 to 2018. The dataset includes tax incomes
of individual, product sales, company, and total tax incomes.
The experimental results show that batch model reveals
better performance than stochastic model. Using the batch
scheme, we conducted an experiment in which total taxes are
predicted during next seven months, and compared with
actual collected total taxes. the results shows that predicted
data are almost same with the actual data.

The future works is to improve the processing time and
decrease the losses. To reduce the processing time, parallel
processing can be used. In a parallel processing scheme,
input dataset for training and testing are divided into smaller
parts, and each data are stored in distributed clients
computing devices. Then, the results are merged into one
final data.

References

[1] L. Sheng, C. Zhong-jian, and Z. Xiao-bin, “Application of
GA-SVM time series prediction in tax forecasting,” 2009 2nd
IEEE International Conference on Computer Science and
Information Technology, Beijing, 2009, pp.34-36.

86 JEMEISD=EA/EFEH H S8 AIAH HMeH M4=(2019. 4)

[2] Y. Zhang, “Research on the Model of Tax Revenue Forecast
of Jilin Province Based on Gray Correlation Analysis,” 2014
Sixth International Conference on Intelligent Human-Machine
Systems and Cybernetics, Hangzhou, 2014, pp.30-33.

[3] D. Liu, R. Zhang, and J. Li, “Tax Revenue Combination
Forecast of Hebei Province Based on the IOWA Operator,”
2011 Fourth International Joint Conference on Computational
Sciences and Optimization, Yunnan, 2011, pp.516-519.

[4] D. Sena and N. K. Nagwani, “Application of time series based
prediction model to forecast per capita disposable income,”
2015 IEEE International Advance Computing Conference
(IACC), Banglore, 2015, pp.454-457.

[6] T. W. Ayele and R. Mehta, “Real Time Temperature
Prediction Using IoT,” 2018 Second International Conference
on Inventive Communication and Computational Technologies
(ICICCT), Coimbatore, 2018, pp.1114-1117.

[6] T. W. Ayele and R. Mehta, “Air pollution monitoring and
prediction using I0T,” 2018 Second International Conference
on Inventive Communication and Computational Technologies
(ICICCT), Coimbatore, 2018, pp.1123-1132.

[71 Y. Wang, J. Zhou, K. Chen, Y. Wang, and L. Liu, “Water
quality prediction method based on LSTM neural network,”
2017 12th International Conference on Intelligent Systems
and Knowledge Engineering (ISKE), Nanjing, 2017, pp.1-5.

[8] A. M. Ertugrul and P. Karagoz, “Movie Genre Classification
from Plot Summaries Using Bidirectional LSTM,” 2018 IEEE
12th International Conference on Semantic Computing
(ICSC), Laguna Hills, CA, 2018, pp.243-251.

[09] K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink,
and J. Schmidhuber, “LSTM: A Search Space Odyssey,” in
IEEE Transactions on Neural Networks and Learning
Systems, Vol.28, No.10, pp.2222-2232, Oct. 2017.

[10] G. Botla, V.K. Vadlagattu, and Y. R. Kalipatnapu, “Modeling
of Batch Processes Using Explicitly Time-Dependent
Artificial Neural Networks,” in IEEE Transactions on
Neural Networks and Learning Systems, Vol.25, No.5,
pp.970-979, 2014.

[11] Y. A. Alma, “Electricity Prices Forecasting using Artificial
Neural Networks,” in IEEE Latin America Transactions,
Vol.16, No.l, pp.105-111, 2018.

[12] R. Saman, and A. T. Bryan, “A New Formulation for
Feedforward Neural Networks,” in IEEE Transactions on
Neural Networks, Vol.22, No.10, pp.1588-1598, Oct. 2011.

[13] W.-C. Yeh, “New Parameter-Free Simplified Swarm
Optimization for Artificial Neural Network Training and its
Application in the Prediction of Time Series,” in IEEE
Transactions on Neural Networks and Learning Systems,
Vol.24, No.4, pp.661-665, 2013.

[14] Y. Weizhong, “Toward Automatic Time-Series Forecasting

Using Neural Networks,” in IEEE Transactions on Neural
Networks and Learning Systems, Vol.23, No.7, pp.1028-1039,
2012.

Kumbayoni Lalu Muh
https://orcid.org/0000-0002-2342-4645
e-mail : kumbayoni@kumoh.ac.kr
He received a bachelor from degree in
Automotive Engineering from Daegu
Catholic University in 2017. He is workng
on MSd in Kumoh National Institute of
Technology. His research interests are in the area of Machine

Leaning, Image recognition, Artificial Neural Network.

Sung-Bong Jang
https://orcid.org/0000-0003-3187-6585
e-mail : sungbong.jang @kumoh.ac.kr
He received his B.S., M.S., and Ph.D.
degrees from Korea University, Seoul,
Korea in 1997, 1999, and 2010, respectively.
He worked at the Mobile Handset R&D
Center, LG Electronics from 1999 to 2012. Currently, he is an
associate professor in the Department of Industry-Academy,
Kumoh National Institute of Technology in Korea. His interests
include Augmented Reality, Big Data Privacy, Prediction based
on Artificial Neural Networks.

